


	3.45 cm										
	ा ।	- (1	<u>"</u>								
	3.0										
	40.30	ıı	.06 =								
lons	A	В	J								
Triangle Applications	triangle B										
langle	the tr	E	U								
Right Tr	So 14 e			1) Find							
	<u>×</u>		Q	9							

Ex. 5. An airplane is flying toward a canyon. From the plane, the angle of depression to the near side of the canyon is 55° and the angle of depression to the far side is 43°. If the altitude of the plan is 20,000 feet, then what is the distance across the canyon to the nearest foot?

Ex. 6. From the roof of a building 200 feet from a line through the center of the Empire State Building, the angle of elevation to the top of the ESB is 36° while the angle of depression to its base is 79.7°. Find the height of the ESB to the nearest foot.

	direction.			W A		
			Z		→ v	
	specifying	5wi				
		Heading		3		
	72	A				
	used					
	me thods			L 4		
tion.	common					
Direction	two co		Z*		~~ S	
gwiy		Bearing				
Specifying	There are			*		
S	۴	Î				

	27	Right Triangle Applications (§4.8)
Ex. 7.		s an airport flying at 365 miles per hour on a heading of 35°. To the nearest mile, and east will the plane be from the airport after two hours?
x. 8.	Two coastal of	bservers located at points A and B ten miles apart spot a submarine offshore. If A is
	located directl respectively, the	by north of B and the bearings to the submarine from A and B are S58°E and N32°E then find the following distances to the nearest tenth of a mile.
	located directly respectively, the a) The distance	y north of B and the bearings to the submarine from A and B are S58°E and N32°E
	located directly respectively, the a) The distance	by north of B and the bearings to the submarine from A and B are S58°E and N32°E then find the following distances to the nearest tenth of a mile. The from the submarine to point A .
	located directly respectively, the a) The distance	by north of B and the bearings to the submarine from A and B are S58°E and N32°E then find the following distances to the nearest tenth of a mile. The from the submarine to point A .
	located directly respectively, the a) The distance	by north of B and the bearings to the submarine from A and B are S58°E and N32°E then find the following distances to the nearest tenth of a mile. The from the submarine to point A .
	located directly respectively, the a) The distance	by north of B and the bearings to the submarine from A and B are S58°E and N32°E then find the following distances to the nearest tenth of a mile. The from the submarine to point A .
	located directly respectively, the a) The distance	by north of B and the bearings to the submarine from A and B are S58°E and N32°E then find the following distances to the nearest tenth of a mile. The from the submarine to point A .
	located directly respectively, the a) The distance	by north of B and the bearings to the submarine from A and B are S58°E and N32°E then find the following distances to the nearest tenth of a mile. The from the submarine to point A .

MATH	27 Right Triangle Applications (§4.8)
Ex. 9.	A plane is 160 miles north and 85 miles west of an airport. At what heading should the pilot fly to return directly to the aiport, to the nearest tenth of a degree?
Ex. 10.	In the movie Close Encounters of the Third Kind, Devil's Tower in Wyoming figured prominently. There was a scene in which the star, Richard Dryfuss was approaching the tower. He could have
	determined his distance from the tower by stopping at point P and estimating the angle P as shown the picture. After moving 100 meters toward Devil's Tower, he could estimate the angle N as shown
	determined his distance from the tower by stopping at point P and estimating the angle P as shown
	determined his distance from the tower by stopping at point P and estimating the angle P as shown the picture. After moving 100 meters toward Devil's Tower, he could estimate the angle N as shown
	determined his distance from the tower by stopping at point P and estimating the angle P as shown the picture. After moving 100 meters toward Devil's Tower, he could estimate the angle N as shown $\frac{14.8^{\circ}}{N} = \frac{13.5^{\circ}}{100m} = P$
	determined his distance from the tower by stopping at point P and estimating the angle P as shown the picture. After moving 100 meters toward Devil's Tower, he could estimate the angle N as shown a) How far away from Devil's Tower is point N ? b) How tall is Devil's Tower?
	determined his distance from the tower by stopping at point P and estimating the angle P as shown the picture. After moving 100 meters toward Devil's Tower, he could estimate the angle N as shown a) How far away from Devil's Tower is point N ? b) How tall is Devil's Tower?
	determined his distance from the tower by stopping at point P and estimating the angle P as shown the picture. After moving 100 meters toward Devil's Tower, he could estimate the angle N as shown a) How far away from Devil's Tower is point N ? b) How tall is Devil's Tower?
	determined his distance from the tower by stopping at point P and estimating the angle P as shown the picture. After moving 100 meters toward Devil's Tower, he could estimate the angle N as shown a) How far away from Devil's Tower is point N ? b) How tall is Devil's Tower?
	determined his distance from the tower by stopping at point P and estimating the angle P as shown the picture. After moving 100 meters toward Devil's Tower, he could estimate the angle N as shown a) How far away from Devil's Tower is point N ? b) How tall is Devil's Tower?