Exponential and Logarithmic Models (§3.5) | 1. | If money is placed in an account paying interest compounded continuously, then the amount in the account at time t can be calculated by the formula $A = Pe^{rt}$, where P represents the principal and r the interest rate. | |----|---| | | How long will it take \$1000 to double at $2\frac{1}{2}\%$ compounded continuously? | | 2. | The population of a region at time t (in years) is modeled by the formula $P = P_0 e^{rt}$, where P_0 is the initial population of the region and r the growth constant. | | | a) The population of Sonoma County in 2000 was 459 thousand and in 2010 it was 484 thousand Determine <i>r</i> to four decimal places. | | | | | | | | | b) If the growth rate remains the same, then when will the population be 1 million? | | 3. | The population of a colony of bacteria is modeled by $P = \frac{240,000}{1 + 23e^{-0.1398t}}$, where t is measured | |----|---| | | (in days) from the beginning of the experiment. When will the population be 100,000? | | | | - 4. It was discovered at the beginning of the 20^{th} century that radioactive materials decay in a way that can be modeled by the formula $A = A_0 e^{rt}$, where A_0 is the initial amount of the material present. Strontium-90 is a radioactive material with a half-life of 28 years. It is one of the waste products from nuclear fission reactors. - a) Determine r to four decimal places. b) How long will it be before 1% of the original sample remains?