Digging for Gold

Discovering the Golden Ratio

John Martin
Santa Rosa Junior College

AMATYC Conference November 10, 2017

Fascinating Numbers

Fascinating Numbers

Fascinating Numbers

Fascinating Numbers

Fascinating Numbers

OTHER CONSTANTS

Euler's Constant $\gamma=0.57721566490153286061$
$\log _{e} \gamma=-0.54953931298164482234$
Golden Ratio $\varnothing=1.618033988749894848204586834365638117720309180$

Fascinating Numbers

OTHER CONSTANTS
Euler's Constant $\gamma=0.57721566490153286061$
$\log _{e} \gamma=-0.54953931298164482234$
Golden Ratio $\varnothing=1.618033988749894848204586834365638117720309180$

The Golden Rectangle:

A rectangle with the property that the removal of a square results in a new rectangle that has the same length to width ratio as the original.

The Golden Rectangle:
A rectangle with the property that the removal of a square results in a new rectangle that has the same proportions as the original.

$$
\begin{aligned}
\frac{x}{1} & =\frac{1}{x-1} \\
x^{2}-x & =1 \\
x^{2}-x-1 & =0
\end{aligned}
$$

$$
x=\frac{1 \pm \sqrt{1-4(-1)}}{2}=\frac{1 \pm \sqrt{5}}{2} \approx 1.618 \text { or }-.618
$$

The Golden Rectangle

History of the Golden Ratio Euclid of Alexandria

 (ca. 325 в.C. -265 в.C.)

Consists of 13 books
Containing 465 propositions

History of the Golden Ratio

Euclid of Alexandria
(ca. 325 B.C. -265 B.C.)

Book VI, Proposition 30

The Extreme and Mean Ratio

Given a segment $\overline{A B}$, find the point C such that

$$
\begin{aligned}
\frac{A C}{C B} & =\frac{A B}{A C} \\
\frac{x}{1} & =\frac{x+1}{x} \\
x^{2} & =x+1 \\
x^{2}-x-1 & =0 \\
x & \approx 1.618
\end{aligned}
$$

History of the Golden Ratio

Martin Ohm (1835) \longrightarrow "Golden Section"

Phidias (Фعıסıんऽ) (ca. 490 - 430 в.с.)

Constructing a Regular Pentagon A

Constructing a Regular Pentagon A

Constructing a Regular Pentagon

 A

The Pentagram

The Pentagram

The Pythagoreans and the Pentagram

Pythagoras of Samos (ca. 569 в.c. -475 в.c.)

THE DODECAHEDRON

The Golden Rectangle and the Dodecahedron

The Golden Rectangle and the Dodecahedron

The Golden Rectangle and the Dodecahedron

A Mathematical Sculpture

"Essence"
Richard Werner

Art and the Golden Ratio

"Sacrament of the Last Supper" Salvador Dali

Art and the Golden Ratio

Leonardo

Dürer

Art and the Golden Ratio

"A Golden Rectangle fits so neatly around St. Jerome that some experts believe Leonardo purposely painted the figure to conform to those proportions."

Mathematics
David Bergamini

All that Glitters?

"The Greeks saw beauty in number and shape and their excitement with the golden ratio manifested itself in their art and architecture and has been echoed by later civilizations in such places as Notre Dame in Paris and in the UN building in New York."

Random House Encyclopedia

$$
\frac{H}{W}=\frac{505}{287} \approx 1.76 \neq \Phi \approx 1.618
$$

All that Glitters?

http://library.thinkquest.org/trio/TTQ05063/phibeauty4.htm

Good as Gold?

Good as Gold?

The Parthenon

http://library.thinkquest.org/trio/TTQ05063/phibeauty4.htm

The Great Pyramid

The Great Pyramid

IIt was reported that the Greek historian Herodotus learned from the Egyptian priests that the square of the Great Pyramid's height is equal to the area of its triangular lateral side."

The Great Pyramid

"It was reported that the Greek historian Herodotus learned from the Egyptian priests that the square of the Great Pyramid's height is equal to the area of its triangular lateral side."
"The Pyramid itself was twenty years in the building. It is a square, eight hundred feet each way, and the height the same, built entirely of polished stone fitted together with the utmost care."

History, Book II, P. 24 Herodotus

The Great Pyramid

"It was reported that the Greek historian Herodotus learned from the Egyptian priests that the square of the Great Pyramid's height is equal to the area of its triangular lateral side."

The Great Pyramid:

Spirals

The Golden Spiral

Spirals

The Golden Spiral
Logarithmic Spiral Spira Mirabilis

The Chambered Nautilus

Nautilus pompilius

Nested Radicals

$$
\begin{gathered}
\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}=? \\
x=\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}} \\
x^{2}=1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}} \\
x^{2}=1+x \\
x^{2}-x-1=0 \longrightarrow x=\Phi
\end{gathered}
$$

Nested Radicals

$$
\begin{gathered}
\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}=\Phi \\
x=\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}} \\
x^{2}=1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}} \\
x^{2}=1+x \\
x^{2}-x-1=0 \longrightarrow x=\Phi
\end{gathered}
$$

Continued Fraction

$$
\begin{aligned}
1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}}=? \quad x & =1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}} \\
x & =1+\frac{1}{x} \\
x^{2}-x-1 & =0 \\
x & =\Phi
\end{aligned}
$$

Continued Fraction

$$
1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}}=\Phi \quad x=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}}
$$

$$
\begin{aligned}
x & =1+\frac{1}{x} \\
x^{2}-x-1 & =0 \\
x & =\Phi
\end{aligned}
$$

Golden Ratio Surprises

$$
1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}}=\Phi
$$

$$
\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}=\Phi
$$

Powers of the Golden Ratio

$$
\Phi^{2}=\Phi+1
$$

$$
\Phi^{3}=2 \Phi+1
$$

$$
\Phi^{4}=3 \Phi+2
$$

$$
\Phi^{5}=5 \Phi+3
$$

Apparently

$$
\Phi^{n}=a \Phi+b
$$

$$
\Phi^{7}=13 \Phi+8
$$

$$
\Phi^{8}=21 \Phi+13
$$

Leonardo of Pisa (Fíbonacci)

A certain man put a pair of rabbits in a place surrounded on all sides by a wall. How many pairs of rabbits can be produced from that pair in a year if it is supposed that every month each pair begets a new pair which from the second month on becomes productive?

$$
1,1,2,3,5,8,13,21,34, \ldots
$$

The Filbonacci Sequence

$$
1,1,2,3,5,8,13,21,34, \ldots
$$

F_{n} represents the nth Fibonacci number

$$
\begin{gathered}
F_{1}=1 \quad F_{2}=1 \quad F_{3}=2 \\
F_{n}=F_{n-1}+F_{n-2}, \text { where } n \geq 3 \\
F_{2}=F_{1}=1
\end{gathered}
$$

The recursive definition of the Fibonacci sequence.

The Fibonacci Metric Converter

$$
\begin{aligned}
& F_{1}=1 \\
& F_{2}=1 \\
& F_{3}=2 \\
& F_{4}=3 \\
& F_{5}=5 \\
& F_{6}=8 \\
& F_{7}=13 \\
& F_{8}=21 \\
& F_{9}=34 \\
& F_{10}=55 \\
& F_{11}=89 \\
& F_{12}=144 \\
& F_{13}=233 \\
& F_{14}=377
\end{aligned}
$$

Santa Rosa \longrightarrow Arcata ~ 228 miles

To convert to kilometers

$$
\begin{aligned}
F_{13}+F_{11}+F_{9}+F_{7} & =233+89+34+13 \\
& =369 \mathrm{~km}
\end{aligned}
$$

Actually, $228 \mathrm{mi}=367 \mathrm{~km}$

Family Tree of a Male Honey Bee

Female	Male	Total
Bees	Bees	Bees

(

Sunflower Spirals

21 Green and 34 Red

An Explicit Formula for F_{n}^{\prime}

$$
\begin{aligned}
F_{n} & =\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right] \\
F_{100} & =\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{100}-\left(\frac{1-\sqrt{5}}{2}\right)^{100}\right] \\
& =354,224,848,179,261,915,075
\end{aligned}
$$

An Explicit Formula for F_{n}

$$
F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]
$$

Binet's Formula 1786-1856
L. Euler - 1765
A. de Moivre - 1730

An Explicit Formula for F_{n}

$$
\begin{aligned}
& F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right] \\
& F_{n}=\frac{1}{\sqrt{5}}\left[\Phi^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right] \\
& F_{n}=\frac{1}{\sqrt{5}}\left[\Phi^{n}-\left(\frac{-1}{\Phi}\right)^{n}\right]
\end{aligned}
$$

The Golden Ratio

"The great book of nature lies ever open before our eyes and the truths of science are written in it ...

But we cannot read it unless we have first learned the language and the characters in which it is written ...

Galileo Galilei
1564-1642

It is written in mathematical language and the characters are triangles, circles, and other geometrical figures; without whose help it is humanly impossible to understand a single word of it and without which we wander about in a dark maze."

The Golden Ratio

