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Numerical Constants

Fascinating Numbers



OTHER CONSTANTS

Golden Ratio  ø  =      1. 61803  39887  49894  84820  45868  34365  63811  77203  09180

Fascinating Numbers



Fascinating Numbers

OTHER CONSTANTS

Golden Ratio  ø  =      1. 61803  39887  49894  84820  45868  34365  63811  77203  09180

The Golden Rectangle:
A rectangle with the property that the removal of a 
square results in a new rectangle that has the same
length to width ratio as the original.
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The Golden Rectangle: 
A rectangle with the property that the removal 
of a square results in a new rectangle that has 
the same proportions as the original.  
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Consists of 13 books
Containing 465 propositions

Euclid of Alexandria
(ca. 325 B.C. – 265 B.C.)

History of the Golden Ratio



Euclid of Alexandria
(ca. 325 B.C. – 265 B.C.)

History of the Golden Ratio

Book VI, Proposition 30



Given a segment AB, 
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The Extreme and Mean Ratio  
find the point C such that 
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Martin Ohm (1835)

Mark Barr 

“Golden Section”

(Φειδιας ) (ca. 490 – 430 B.C.)Phidias

History of the Golden Ratio
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The Pentagram
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Pythagoras of Samos (ca. 569 B.C. – 475 B.C.)

The Pythagoreans and the Pentagram



THE Dodecahedron



The Golden Rectangle and
the Dodecahedron
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The Golden Rectangle and
the Dodecahedron
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The Golden Rectangle and
the Dodecahedron



A Mathematical Sculpture

“Essence”
Richard Werner



“Sacrament of the Last Supper”
Salvador Dali

Art and the Golden Ratio



Leonardo
Dürer

Raphael

Art and the Golden Ratio



“A Golden Rectangle 
fits so neatly around 
St. Jerome that some 
e x p e r t s b e l i e v e 
Leonardo purposely 
painted the figure to 
conform to those 
proportions.”

Mathematics
David Bergamini

Art and the Golden Ratio



≠ Φ ≈ 1.618

“The Greeks saw beauty in 
number and shape and their 
excitement with the golden ratio 
manifested itself in their art and 
architecture and has been echoed 
by later civilizations in such places 
as Notre Dame in Paris and in the 
UN building in New York.”

Random House Encyclopedia

All that Glitters?
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http://library.thinkquest.org/trio/TTQ05063/phibeauty4.htm

All that Glitters?

http://library.thinkquest.org/trio/TTQ05063/phibeauty4.htm
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1.54 < W
H

< 2.25

The Parthenon

http://library.thinkquest.org/trio/TTQ05063/phibeauty4.htm
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The Great Pyramid
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The Great Pyramid
“It was reported that the Greek historian Herodotus learned from 
the Egyptian priests that the square of the Great Pyramid’s 
height is equal to the area of its triangular lateral side.”



“The Pyramid itself was twenty years 
in the building.  It is a square, eight
hundred feet each way, and the 
height the same, built entirely
of polished stone fitted 
together with the 
utmost care.”

History, Book II, P. 24
Herodotus

“It was reported that the Greek historian Herodotus learned from 
the Egyptian priests that the square of the Great Pyramid’s 
height is equal to the area of its triangular lateral side.”
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The Great Pyramid



The Great Pyramid:  
Why Was it Built and Who Built It?

John Taylor, 1859
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The Great Pyramid
“It was reported that the Greek historian Herodotus learned from 
the Egyptian priests that the square of the Great Pyramid’s 
height is equal to the area of its triangular lateral side.”



Spirals

The Golden Spiral



Logarithmic Spiral Spira Mirabilis

The Golden Spiral

Spirals



The Chambered Nautilus

Nautilus pompilius

1.618

1.35

Average = 1.33



  
x2-x-1 = 0

  
x2 = 1+x
   

x2 = 1+ 1+ 1+ 1+ 1+!

Nested Radicals  
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Golden Ratio Surprises



 
Φ4 =
 
Φ5 = 5Φ+3  

 
Φ6 = 8Φ+5  

 
Φ8 = 21Φ+13  

 
Φ7 = 13Φ+8  

 
3Φ+2  
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Φ2 = Φ + 1
 
Φ3 =

Powers of the Golden Ratio  

Apparently

 
Φn = aΦ+b  



Leonardo of Pisa (Fibonacci)

1,  1,  2,  3,  5,  8,  13,  21,  34,  ...

A certain man put a pair of 
rabbits in a place surrounded 
on all sides by a wall.  How 
many pairs of rabbits can be 
produced from that pair in a 
year if it is supposed that every 
month each pair begets a new 
pair which from the second 
month on becomes productive?
  



The Fibonacci Sequence

1,  1,  2,  3,  5,  8,  13,  21,  34,  ...

F3 = 2F1 = 1 F2 = 1

Fn represents the nth Fibonacci number

, where n ≥ 3Fn = Fn−1 + Fn−2

F2 = F1 = 1

The recursive definition of the Fibonacci sequence.





= 144

= 369 km

The Fibonacci Metric Converter
F1 = 1
F2 = 1
F3 = 2
F4 = 3
F5 = 5
F6 = 8
F7 = 13
F8 = 21
F9 = 34
F10 = 55
F11 = 89
F12 = 144
F13 = 233
F14 = 377

Santa Rosa Arcata ~228 miles

To convert to kilometers

Actually,   228 mi  =  367 km

+ 55+ 21+ 8
= F12 + F10 + F8 + F6

F13 + F11 + F9 + F7 = 233+ 89 + 34 +13

228 mi



Family Tree of a Male Honey Bee
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Total
Bees



21 Green and  34 Red

Sunflower Spirals



= 354,224,848,179,261,915,075
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Binet’s Formula
1786 – 1856

L. Euler – 1765

A. de Moivre – 1730

An Explicit Formula for Fn
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The Golden Ratio

1564 – 1642
Galileo Galilei

“The great book of nature lies ever 
open before our eyes and the truths of 
science are written in it ...

But we cannot read it unless we have first 
learned the language and the characters 
in which it is written ...  

It  is  written  in  mathematical language  and the characters are 
triangles, circles, and other geometrical figures; 

and without which we wander about in a dark maze.”

                                                                              without whose 
help it is  humanly impossible to understand a single word of it 
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The Golden Ratio


