A+ Guide to Managing and Maintaining Your PC, 7e

Chapter 1
Introducing Hardware
Objectives

• Learn that a computer requires both hardware and software to work
• Learn about the many different hardware components inside of and connected to a computer
Hardware Needs Software to Work

- **Hardware**
 - Computer’s physical components
 - Monitor, keyboard, memory, hard drive
- **Software**
 - Instruction set
 - Directs hardware to accomplish a task
 - Uses hardware for four basic functions
 - Input, processing, storage, output
- **Hardware components**
 - Require an electrical system
Figure 1-1 Computer activity consists of input, processing, storage, and output
Courtesy: Course Technology/Cengage Learning
Hardware Needs Software to Work (cont’d.)

- User interaction with computer
 - User and software communicate with input device
 - Hardware uses two states: on and off

Figure 1-2 All communication, storage, and processing of data inside a computer are in binary form until presented as output to the user. Courtesy: Course Technology/Cengage Learning
Hardware Needs Software to Work (cont’d.)

• Binary number system
 – Stores and reads two states
 • Zero or one
 – Bit: binary digit
 • Value of zero or one
 – Nibble: four bits
 – Byte: eight bits
 – Used for counting, calculation, storage operations

• American Standard Code for Information Interchange (ASCII)
 – Used for storing information
Figure 1-3 All letters and numbers are stored in a computer as a series of bits, each represented in the computer as on or off.

Courtesy: Course Technology/Cengage Learning
PC Hardware Components

- Input/output (I/O) devices: external to the case
- Processing, storage devices: internal to the case
- Central processing unit (CPU)
 - Also called: processor, microprocessor
 - Reads input, processes data, writes data to storage
- Elements required by I/O, storage devices
 - Method for CPU to communicate with the device
 - Software to instruct, control the device
 - Electricity to power the device
Hardware Used for Input and Output

• I/O device communication with computer components
 – Wireless
 – Cabled using a port
 • Access point located in back or front of case

• Primary input devices
 – Keyboard, mouse
 • Requires electricity from inside case

• Primary output devices
 – Monitor: visually displays primary computer output
 – Printer: produces paper output (hard copy)
Figure 1-4 Input/output devices connect to the computer case by ports usually found on the back of the case.

Courtesy: Course Technology/Cengage Learning
Figure 1-5 The keyboard and the mouse are the two most popular input devices
Courtesy: Course Technology/Cengage Learning

Figure 1-6 The two most popular output devices are the monitor and the printer
Courtesy: Course Technology/Cengage Learning
Figure 1-7 Two video connectors and two connectors used by a printer
Courtesy: Course Technology/Cengage Learning
Hardware Inside the Computer Case

• Storage and processing occurs in the case
• Internal devices common to most computers
 – Motherboard containing CPU, memory, other parts
 – Hard drive, optical drive for permanent storage
 – Power supply with power cords supplying electricity
 – Adapter cards for internal and external communication
 – Cables to connect devices
• Adapter card installed in expansion slots
• Cable types
 – Data (communication) and power
Figure 1-8 Inside the computer case
 Courtesy: Course Technology/Cengage Learning
The Motherboard

- Largest, most important circuit board
 - Main board or system board
 - Contains the CPU, expansion slots, other devices
- Motherboard component categories
 - Processing, temporary storage, communication, power
- All devices communicate with motherboard CPU
- Peripheral device links to motherboard via cable
- Motherboard ports may be outside of the case
 - Keyboard, mouse, parallel, USB ports, sound ports
Figure 1-9 All hardware components are either located on the motherboard or directly or indirectly connected to it because they must all communicate with the CPU
Courtesy: Course Technology/Cengage Learning
Figure 1-10 A motherboard provides ports for common I/O devices
Courtesy: Course Technology/Cengage Learning
The Processor and the Chipset

• CPU
 – Chip inside the computer
 – Performs most data processing
• Chipset
 – Group of microchips controlling data flow
• Personal computer (PC)
 – Focus of this text
• Major CPU, chipsets manufacturers
 – Intel Corporation, AMD
Figure 1-11 The processor is hidden underneath the fan and the heat sink, which keep it cool
Courtesy: Course Technology/Cengage Learning
Storage Devices

- Primary storage (main memory)
 - Temporary storage used by the processor
- Secondary storage (permanent storage)
 - Enables data to persist after machine turned off
 - Examples: hard drive, CD, DVD, USB drive
- Primary-secondary memory relationship analogy
 - Library book stacks: permanent storage
 - Books moved to a desk: temporary storage
Figure 1-12 Memory is a temporary place to hold instructions and data while the CPU processes both. Courtesy: Course Technology/Cengage Learning
Primary Storage

• Provided by random access memory (RAM)
 – Located on motherboard, adapter cards
• RAM chips
 – Embedded on small board
 – Plugs into motherboard
 – Most common: dual inline memory module (DIMM)
 – Video memory: embedded on video card
• Volatile memory
• Non-volatile memory
Figure 1-13 A DIMM holds RAM and is mounted directly on a motherboard
Courtesy: Course Technology/Cengage Learning
Secondary Storage

• Remote storage locations containing data and instructions
 – Cannot be directly processed by CPU
 – Permanent

• Hard drives
 – Main secondary computer storage device
 – Magnetic hard drives
 • Use Integrated Drive Electronics (IDE)
 – Solid state drive (SSD)
 • Use nonvolatile flash memory
Figure 1-15 Hard drive with sealed cover removed
Courtesy: Seagate Technologies LLC

Figure 1-16 Four SSD drives
Courtesy: Course Technology/Cengage Learning
Secondary Storage (cont’d.)

• Hard drives (cont’d.)
 – ATA (AT Attachment) standard
 • Specifies motherboard-hard drive interface
 • Types: serial ATA (SATA), parallel ATA (PATA)
 – Serial ATA standard
 • External SATA (eSATA)
 • Usually two to eight SATA and eSATA connectors
 – Parallel ATA (PATA)
 • Slower than SATA
 • Two connectors on a motherboard for two data cables
 • Accommodates up to four IDE devices
Figure 1-18 Using a parallel ATA interface, a motherboard has two IDE connectors, each of which can accommodate two devices; a hard drive usually connects to the motherboard using the primary IDE connector.

Courtesy: Course Technology/Cengage Learning
Figure 1-19 Two IDE devices connected to a motherboard using both IDE connections and two cables
Courtesy: Course Technology/Cengage Learning
Figure 1-20 This system has a CD-ROM and a Zip drive sharing the secondary IDE cable and a hard drive using the primary IDE cable. Courtesy: Course Technology/Cengage Learning
Secondary Storage (cont’d.)

• Optical drives
 – RW can write to a disk
 – ROM (read-only memory) can only read a disc

Figure 1-22 This CD drive is an EIDE device and connects to the motherboard by way of an IDE data cable
Courtesy: Course Technology/Cengage Learning
Secondary Storage (cont’d.)

• USB flash drives and memory cards
 – Popular, nonvolatile flash memory chips
 – Compact; easy to use; currently hold up to 64 GB of data

Figure 1-24 Most laptops have a memory card slot that can accommodate an SD card
Courtesy: Course Technology/Cengage Learning
Secondary Storage (cont’d.)

• Floppy drive
 – Older secondary storage device
 – 3.5-inch disk holding 1.44 MB of data
 – Floppy drive connector
 • Distinct from IDE connectors
 • Floppy drive cable accommodates one or two drives
Motherboard Components Used For Communication Among Devices

• Traces
 – Fine lines on top and bottom of the motherboard’s surface

• Bus
 – System of pathways, transmission protocols

• Data bus
 – Carries the data
Figure 1-27 On the bottom of the motherboard, you can see bus lines terminating at the CPU socket
Courtesy: Course Technology/Cengage Learning
Motherboard Components Used For Communication Among Devices (cont’d.)

• Binary data corresponds to voltage on the line
 – Voltage, lack of voltage interpreted as binary digits

• Data bus sizes today
 – 16, 32, 64, 128, 256 bits wide
 – Some use error checking bit

![Diagram of data bus](image)

Figure 1-28 A data bus has traces or lines that carry voltage interpreted by the CPU and other devices as bits Courtesy: Course Technology/Cengage Learning
Motherboard Components Used For Communication Among Devices (cont’d.)

- Data path size
 - Width of a data bus

- Motherboard can have more than one bus
 - Main motherboard bus
 - Communicates with CPU, memory, chipset
 - Also called system bus, front side bus (FSB), memory bus, host bus, local bus, external bus

- System clock
 - Dedicated to timing motherboard chip activities
 - Quartz crystal generates oscillation
Figure 1-29 The system clock is a pulsating electrical signal sent out by this component that works much like a crystal in a wristwatch (one line, or circuit, on the motherboard bus is dedicated to carrying this pulse)

Courtesy: Course Technology/Cengage Learning
Motherboard Components Used For Communication Among Devices (cont’d.)

- Devices work according to beats (or cycles)
- Clock speed measured in hertz (cycles/second)
 - One megahertz (MHz): one million cycles per second
 - One gigahertz (GHz): one billion cycles per second
- Common ratings for motherboard buses
 - 2600 MHz, 2000 MHz, 1600 MHz, 1333 MHz, 1066 MHz, 800 MHz, 533 MHz, or 400 MHz
- Range of CPU speeds: 166 MHz to 4 GHz
- Buses for expansion slots: PCI, AGP, ISA
Figure 1-30 The lines of a bus terminate at an expansion slot where they connect to pins that connect to lines on the expansion card inserted in the slot.

Courtesy: Course Technology/Cengage Learning
Figure 1-31 The one AGP slot used for a video card is set farther from the edge of the board than the PCI slots
Courtesy: Course Technology/Cengage Learning
Expansion Cards

• Some names for circuits mounted in expansion slots
 – Circuit cards, adapter boards, expansion cards, cards
• Cards that connect the CPU to an external device
 – Video: provides a port for the monitor
 – Sound: provides ports for speakers and microphones
 – Network: provides a port for a network cable
 – Modem: provides ports for phone lines
• Determine a card’s function by identifying its port
Figure 1-32 This adapter card is a modem card and is mounted in a PCI slot on the motherboard
Courtesy: Course Technology/Cengage Learning
Figure 1-34 The easiest way to identify this video card is to look at the ports on the end of the card
Courtesy: Course Technology/Cengage Learning
The Electrical System

• Power supply
 – Most important electrical component
 – Converts AC voltage external source to DC voltage
 – Reduces voltage from 110-120 volts to 12 volts or less
 – Runs a fan to cool the inside of the computer case
• Temperatures > 185° F can cause component failure
• Motherboard has 1 or 2 connections to power supply
Figure 1-36 The motherboard receives its power from the power supply by way of a 20 or 24-pin connector called the P1 connector
Courtesy: Course Technology/Cengage Learning
Instructions Stored on the Motherboard and Other Boards

• BIOS (basic input/output system)
 – Data and instructions stored on ROM chips
 – ROM BIOS chips: type of firmware

• Three purposes served by motherboard ROM BIOS
 – System BIOS: manages simple devices
 – Startup BIOS: starts the computer
 – CMOS setup: changes motherboard settings

• CMOS RAM: includes date, time, port configurations

• Flash ROM
 – ROM chips that can be overwritten
Figure 1-37 This firmware chip contains flash ROM and CMOS RAM; CMOS RAM is powered by the coin battery located near the chip

Courtesy: Course Technology/Cengage Learning
Summary

• A computer comprises hardware and software
• Main functions
 – Input, output, processing, storage
• Data stored in a binary format (one or zero, on or off)
• Input/output devices
 – Keyboard, mouse, printer, monitor
• Motherboard (system board)
 – Contains CPU, access to other circuit boards, peripherals
Summary (cont’d.)

- Primary storage (RAM): volatile
- Secondary storage: nonvolatile
- Parallel and serial ATA standards
 - Enable secondary storage devices to interface with the motherboard
- Computer bus
 - System of communication pathways, protocols
- ROM BIOS
 - Helps start PCs; manages simple devices; changes some motherboard settings