Thermo Summary Chapter 19 & 20

\[PV = nRT = kNT, \quad \Delta E_{\text{int}} = W + Q, \quad \Delta L = \alpha L_0 \Delta T, \quad \Delta V = \beta V_0 \Delta T, \quad Q = mc \Delta T, \quad Q = mL \]

\[P = \frac{Q}{\Delta t} = kA \frac{dT}{dx}, \quad P = e \sigma A(T^4 - T_0^4), \quad \sigma = 5.67 \times 10^{-8} J / sK^4 m^2, \quad k = 1.38 \times 10^{-23} J / K \]

\[W = -\int_{V_i}^{V_f} P \, dV, \quad R = 8.31 J / mol \cdot K, \quad N_A = 6.02 \times 10^{23} / mol, \quad 1 \text{atm} = 1.013 \times 10^5 Pa \]

GENERAL PRINCIPLES

First Law of Thermodynamics

The first law is a general statement of energy conservation.

Work \(W \) and heat \(Q \) depend on the process by which the system is changed.

The change in the system depends only on the total energy exchanged \(W + Q \), not on the process.

Energy

Thermal energy \(E_h \). Microscopic energy of moving molecules and stretched molecular bonds. \(\Delta E_h \) depends on the initial/final states but is independent of the process.

Work \(W \). Energy transferred to the system by forces in a mechanical interaction.

Heat \(Q \). Energy transferred to the system via atomic-level collisions when there is a temperature difference. A thermal interaction.

IMPORTANT CONCEPTS

The work done on a gas is

\[W = -\int_{V_i}^{V_f} P \, dV = -(\text{area under the } pV \text{ curve}) \]

An adiabatic process is one for which \(Q = 0 \). Gases move along an adiabat for which \(pV^\gamma \) is constant, where \(\gamma = C_p / C_V \) is the specific heat ratio. An adiabatic process changes the temperature of the gas without heating it.

Calorimetry. When two or more systems interact thermally, they come to a common final temperature determined by

\[Q_{\text{net}} = Q_1 + Q_2 + \ldots = 0 \]

The heat of transformation \(t \) is the energy needed to cause 1 kg of substance to undergo a phase change

\[Q = \pm ML \]

The specific heat \(c \) of a substance is the energy needed to raise the temperature of 1 kg by 1 K.

\[Q = Mc \Delta T \]

The molar specific heat \(C \) is the energy needed to raise the temperature of 1 mol by 1 K.

\[Q = nC \Delta T \]

The molar specific heat of gases depends on the process by which the temperature is changed:

\[C_v = \text{molar specific heat at constant volume}, \]

\[C_p = \text{molar specific heat at constant pressure}, \]

\[C_r = C_v + R, \text{ where } R \text{ is the universal gas constant.} \]

SUMMARY OF BASIC GAS PROCESSES

<table>
<thead>
<tr>
<th>Process</th>
<th>Definition</th>
<th>Stays constant</th>
<th>Work</th>
<th>Heat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isochoric</td>
<td>(\Delta V = 0)</td>
<td>(V) and (p/T)</td>
<td>(W = 0)</td>
<td>(Q = nC_v \Delta T)</td>
</tr>
<tr>
<td>Isobaric</td>
<td>(\Delta p = 0)</td>
<td>(p) and (V/T)</td>
<td>(W = -p \Delta V)</td>
<td>(Q = nC_p \Delta T)</td>
</tr>
<tr>
<td>Isothermal</td>
<td>(\Delta T = 0)</td>
<td>(T) and (pV)</td>
<td>(W = -nRT \ln(V_f/V_i))</td>
<td>(\Delta E_{\text{int}} = 0)</td>
</tr>
<tr>
<td>Adiabatic</td>
<td>(Q = 0)</td>
<td>(pV^\gamma)</td>
<td>(W = \Delta E_{\text{int}})</td>
<td>(Q = 0)</td>
</tr>
</tbody>
</table>

All gas processes

Ideal-gas law

First law

\(pV = nRT \)

\(\Delta E_{\text{int}} = W + Q = nC_v \Delta T \)