CONCEPTUAL INSIGHT

The two curves in Figure 7 intersect at \(t = 0 \) and again near \(t = 7 \). The \(t \) coordinate of each intersection point is a solution of the equation

\[
1,000(1 + 0.09r) = 1,000(1 + 0.07/12)^{12t}
\]

Don’t try to use algebra to solve this equation. It can’t be done. But the solutions are easily approximated on a graphing calculator (Fig. 8).

![Graph showing two curves intersecting](image)

Figure 8

Exercises 3.2

Find all dollar amounts to the nearest cent. When an interest rate is requested as an answer, express the rate as a percentage correct to two decimal places, unless directed otherwise. In all problems involving days, use a 365-day year.

1. \(P = 950 \)
2. \(P = 2,500 \)
3. \(x = 17 \)
4. \(x = 3.5 \)

W

Skills Warm-up Exercises

In Problems 1–8, solve the equation for the unknown quantity. (If necessary, review section A.7.)

1. \(1.6416 = P(1.2)^3 \)
2. \(2,652.25 = P(1.03)^2 \)
3. \(12x^3 = 58,956 \)
4. \(100x^4 = 15,006.25 \)
5. \(6.75 = 3(1 + i)^2 \)
6. \(13.72 = 5(1 + i)^3 \)
7. \(14,641 = 10,000(1.1)^n \)
8. \(2,488.32 = 1,000(1.2)^n \)

5. \(i = 0.5 \)
6. \(i = 0.4 \)
7. \(n = 4 \)
8. \(n = 5 \)

A

In Problems 9–12, use compound interest formula (1) to find each of the indicated values.

9. \(P = 5,000; i = 0.005; n = 36; A = ? \)
10. \(P = 2,800; i = 0.003; n = 24; A = ? \)
11. \(A = 8,000; i = 0.02; n = 32; P = ? \)
12. \(A = 15,000; i = 0.01; n = 28; P = ? \)

In Problems 13–20, use the continuous compound interest formula (3) to find each of the indicated values.

13. \(P = 2,450; r = 8.12\%; t = 3 \) years; \(A = ? \)
14. \(P = 995; r = 22\%; t = 2 \) years; \(A = ? \)
15. \(A = 6,300; r = 9.45\%; t = 8 \) years; \(P = ? \)
16. \(A = 19,000; r = 7.69\%; t = 5 \) years; \(P = ? \)
17. \(A = 88,000; P = 71,153; r = 8.5\%; t = ? \)
18. \(A = 32,982; P = 27,200; r = 5.93\%; t = ? \)

*Answer located in Additional Instructor’s Answers section.

* 19. \(A = 15,875; P = 12,100; t = 48 \) months; \(r = ? \) 6.79%
* 20. \(A = 23,600; P = 19,150; t = 60 \) months; \(r = ? \) 4.18%

In Problems 21–26, use the given annual interest rate \(r \) and the compounding period to find \(i \), the interest rate per compounding period.

21. 9% compounded monthly 0.75% per month
22. 6% compounded quarterly 1.5% per quarter
23. 14.6% compounded daily 0.04% per day
24. 15% compounded monthly 1.25% per month
25. 4.8% compounded quarterly 1.2% per quarter
26. 3.2% compounded semiannually 1.6% per half-year

In Problems 27–32, use the given interest rate \(i \) per compounding period to find \(r \), the annual rate.

27. 0.395% per month 4.74%
28. 0.012% per day 4.38%
29. 0.9% per quarter 3.6%
30. 0.175% per month 2.1%
31. 2.1% per half year 4.2%
32. 1.4% per quarter 5.6%

B

33. If \$100 is invested at 6\% compounded

- (A) annually (B) quarterly (C) monthly

 $126.25; 82.25
 $126.90; 82.90
 $127.05; 82.95

what is the amount after 4 years? How much interest is earned?

34. If \$2,000 is invested at 7\% compounded

- (A) annually (B) quarterly (C) monthly

 $2,805.10; 805.10
 $2,829.56; 829.56
 $2,835.25; 835.25

what is the amount after 5 years? How much interest is earned?
35. If $5,000 is invested at 5% compounded monthly, what is the amount after
 (A) 2 years? $5,524.71 (B) 4 years? $6,104.48
36. If $20,000 is invested at 4% compounded monthly, what is the amount after
 (A) 5 years? $24,419.93 (B) 8 years? $27,527.90
37. If $8,000 is invested at 7% compounded continuously, what is the amount after 6 years? $12,175.69
38. If $23,000 is invested at 13.5% compounded continuously, what is the amount after 15 years? $174,250.55

39. Discuss the similarities and the differences in the graphs of future value A as a function of time t if $1,000 is invested for 8 years and interest is compounded monthly at annual rates of 4%, 8%, and 12%, respectively (see the figure).

40. Discuss the similarities and differences in the graphs of future value A as a function of time t for loans of $4,000, $8,000, and $12,000, respectively, each at 7.5% compounded monthly for 8 years (see the figure).

41. If $1,000 is invested in an account that earns 9.75% compounded annually for 6 years, find the interest earned during each year and the amount in the account at the end of each year. Organize your results in a table.
42. If $2,000 is invested in an account that earns 8.25% compounded annually for 5 years, find the interest earned during each year and the amount in the account at the end of each year. Organize your results in a table.
43. If an investment company pays 6% compounded semiannually, how much should you deposit now to have $10,000
 (A) 5 years from now? $7,440.94 (B) 10 years from now? $5,536.76
44. If an investment company pays 8% compounded quarterly, how much should you deposit now to have $6,000
 (A) 3 years from now? $4,730.96 (B) 6 years from now? $3,730.33
45. If an investment earns 9% compounded continuously, how much should you deposit now to have $25,000
 (A) 36 months from now? $19,084.49 (B) 9 years from now? $11,121.45
46. If an investment earns 12% compounded continuously, how much should you deposit now to have $4,800
 (A) 48 months from now? $2,970.16 (B) 7 years from now? $2,072.21
47. What is the annual percentage yield (APY) for money invested at an annual rate of
 (A) 3.9% compounded monthly? 3.97%
 (B) 2.3% compounded quarterly? 2.32%
48. What is the annual percentage yield (APY) for money invested at an annual rate of
 (A) 4.32% compounded monthly? 4.41%
 (B) 4.31% compounded daily? 4.40%
49. What is the annual percentage yield (APY) for money invested at an annual rate of
 (A) 5.15% compounded continuously? 5.28%
 (B) 5.20% compounded semiannually? 5.27%
50. What is the annual percentage yield (APY) for money invested at an annual rate of
 (A) 3.05% compounded quarterly? 3.09%
 (B) 2.95% compounded continuously? 2.99%
51. How long will it take $4,000 to grow to $9,000 if it is invested at 7% compounded monthly? 11 $\frac{2}{3}$ yr
52. How long will it take $5,000 to grow to $7,000 if it is invested at 6% compounded quarterly? 5 $\frac{3}{4}$ yr
53. How long will it take $6,000 to grow to $8,600 if it is invested at 9.6% compounded continuously? 3.75 yr
54. How long will it take $42,000 to grow to $60,276 if it is invested at 4.25% compounded continuously? 8.5 yr

C In Problems 55 and 56, use compound interest formula (1) to find n to the nearest larger integer value.

55. $A = 2P; i = 0.06; n = ? \quad n \approx 12$
56. $A = 2P; i = 0.05; n = ? \quad n \approx 15$
57. How long will it take money to double if it is invested at
 (A) 10% compounded quarterly? $7 \frac{1}{4}$ yr
 (B) 12% compounded quarterly? 6 yr
58. How long will it take money to double if it is invested at
 (A) 8% compounded semiannually? 9 yr
 (B) 7% compounded semiannually? 10 $\frac{1}{2}$ yr
59. How long will it take money to double if it is invested at
 (A) 9% compounded continuously? 7.7 yr
 (B) 11% compounded continuously? 6.3 yr
60. How long will it take money to double if it is invested at
(A) 21% compounded continuously? 3.3 yr
(B) 33% compounded continuously? 2.1 yr

Applications

61. A newborn child receives a $20,000 gift toward college from her grandparents. How much will the $20,000 be worth in 17 years if it is invested at 7% compounded quarterly? $65,068.44

62. A person with $14,000 is trying to decide whether to purchase a car now, or to invest the money at 6.5% compounded semiannually and then buy a more expensive car. How much will be available for the purchase of a car at the end of 3 years? $16,961.66

63. What will a $210,000 house cost 10 years from now if the inflation rate over that period averages 3% compounded annually? $282,222.44

64. If the inflation rate averages 4% per year compounded annually for the next 5 years, what will a car that costs $17,000 now cost 5 years from now? $20,683.10

65. Rental costs for office space have been going up at 4.8% per year compounded annually for the past 5 years. If office space rent is now $25 per square foot per month, what were the rental rates 5 years ago? $19.78 per ft² per mo

66. In a suburb, housing costs have been increasing at 5.2% per year compounded annually for the past 8 years. A house worth $260,000 now would have had what value 8 years ago? $173,319.50

67. If the population in a particular country is growing at 1.7% compounded continuously, how long will it take the population to double? (Round up to the next-higher year if not exact.) 41 yr

68. If the world population is now about 7.5 billion people and is growing at 1.1% compounded continuously, how long will it take the population to grow to 10 billion people? (Round up to the next-higher year if not exact.) 27 yr

69. (A) If an investment of $100 were made in 1776, and if it earned 3% compounded quarterly, how much would it be worth in 2026? In 2026, 250 years after the signing, it would be worth $175,814.55.

(B) Discuss the effect of compounding interest monthly, daily, and continuously (rather than quarterly) on the $100 investment.

(C) Use a graphing calculator to graph the growth of the investment of part (A).

70. (A) Starting with formula (1), derive each of the following formulas:

\[P = \frac{A}{(1 + i)^n}, \quad i = \left(\frac{A}{P}\right)^{1/n} - 1, \quad n = \frac{\ln A - \ln P}{\ln(1 + i)} \]

(B) Explain why it is unnecessary to memorize the formulas above for \(P, i, \) and \(n \) if you know formula (1).

No answer required

71. A promissory note will pay $50,000 at maturity 6 years from now. If you pay $28,000 for the note now, what rate compounded continuously would you earn? 9.66%

72. If you deposit $10,000 in a savings account now, what rate compounded continuously would be required for you to withdraw $12,500 at the end of 4 years? 5.58%

73. You have saved $7,000 toward the purchase of a car costing $9,000. How long will the $7,000 have to be invested at 9% compounded monthly to grow to $9,000? (Round up to the next-higher month if not exact.) 2 yr, 10 mo

74. A married couple has $15,000 toward the purchase of a house. For the house that the couple wants to buy, a down payment of $20,000 is required. How long will the money have to be invested at 7% compounded quarterly to grow to $20,000? (Round up to the next-higher quarter if not exact.) 17 quarters or 4 1/4 yr

75. An Individual Retirement Account (IRA) has $20,000 in it, and the owner decides not to add any more money to the account other than interest earned at 6% compounded daily. How much will be in the account 35 years from now when the owner reaches retirement age? $163,295.21

76. If $1 had been placed in a bank account in the year 1066 and forgotten until now, how much would be in the account at the end of 2026 if the money earned 2% interest compounded annually? 2% simple interest? (Now you can see the power of compounding and why inactive accounts are closed after a relatively short period of time.) $180,370,243.40; $20,20

77. How long will it take money to double if it is invested at 7% compounded daily? 8.2% compounded continuously? 3.615 days; 8.453 yr

78. How long will it take money to triple if it is invested at 5% compounded daily? 6% compounded continuously? 8.021 days; 18.310 yr

79. In a conversation with a friend, you note that you have two real estate investments, one that has doubled in value in the past 9 years and another that has doubled in value in the past 12 years. Your friend says that the first investment has been growing at approximately 8% compounded annually and the second at 6% compounded annually. How did your friend make these estimates? The rule of 72 states that the annual compound rate of growth \(r \) of an investment that doubles in \(n \) years can be approximated by \(r = \frac{72}{n} \). Construct a table comparing the exact rate of growth and the approximate rate provided by the rule of 72 for doubling times of \(n = 6, 7, \ldots, 12 \) years. Round both rates to one decimal place.

80. Refer to Problem 79. Show that the exact annual compound rate of growth of an investment that doubles in \(n \) years is given by \(r = 100(2^{1/n} - 1) \). Graph this equation and the rule of 72 on a graphing calculator for \(5 \leq n \leq 20 \).

Solve Problems 81–84 using graphical approximation techniques on a graphing calculator.

81. How long does it take for a $2,400 investment at 13% compounded quarterly to be worth more than a $3,000 investment at 6% compounded quarterly? 14 quarters